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We study the statistical properties of return intervals r between successive energy dissipation rates above a
certain threshold Q in three-dimensional fully developed turbulence. We find that the distribution function
PQ�r� scales with the mean return interval RQ as PQ�r�=RQ

−1f�r /RQ� for RQ� �50,500�, where the scaling
function f�x� has two power-law regimes. The scaling behavior is statistically validated by the Cramér–von
Mises criterion. The return intervals are short-term and long-term correlated and possess multifractal nature.
The Hurst index of the return intervals decays exponentially against RQ, predicting that rare extreme events
with RQ→� are also long-term correlated with the Hurst index H�=0.639. These phenomenological findings
have potential applications in risk assessment of extreme events at very large RQ.
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I. INTRODUCTION

Extreme events are ubiquitous in nature and society and
understanding their dynamics is of crucial importance �1,2�.
However, extreme events are usually rare, which makes it
difficult to investigate their occurrence properties. Recently,
there is an increasing interest in the study of return intervals
or reoccurrence times r between successive events above �or
below� some threshold Q, aiming at unveiling the laws gov-
erning the occurrence of extreme events by studying the sta-
tistics of the return intervals for increasing threshold Q.

Recent studies show that the long-term correlation struc-
ture has essential influence on the statistics of return intervals
�3�. For long-term power-law correlated monofractal records
with exponent �, numerical analysis illustrates that the dis-
tribution density function of the return intervals follows a
stretched exponential PQ�r��exp�−b�r /RQ��� with the same
exponent � and the return intervals are also long-term corre-
lated, again with the same exponent �, where RQ is the mean
return interval associated with threshold Q �4–6�. Uncorre-
lated records with �=1 is a special case, whose return inter-
vals are exponentially distributed. When 0���1, theoreti-
cal analysis with certain approximation shows that the
distribution of return interval is Weibull: PQ�r��r�−1

�exp�−cr�� �7,8�. This seems consistent with recent numeri-
cal results �9�.

For multifractal records in the presence or absence of lin-
ear correlations, extensive simulations based on the multipli-
cative random cascade �MRC� model �10� and the multifrac-
tal random walk �MRW� model �11� unveil that the return
intervals have a power-law decay in the distribution and are
long-term correlated governed by power laws whose expo-
nents depend explicitly on the threshold Q, and the condi-

tional return intervals increase as a power-law function of the
previous return interval �12–14�. These results are of particu-
lar interest since a variety of time series exhibit multifractal
nature. For instance, the returns of common stocks can be
well modeled by the multifractal random walk �15,16�, and
the statistics of the associated return intervals are found to
comply with the numerical prediction �12,14�, which can be
used to significantly improve risk estimation �12�.

Another important issue of multifractal records concerns
the possible scaling behavior of the return interval distribu-
tions PQ�r� over different thresholds Q. Numerical simula-
tions of MRC and MRW time series find no evidence of such
scaling �12–14�. However, empirical return interval analysis
of financial volatility gives miscellaneous results. Several
studies reported that there is a scaling law in the return in-
terval distributions �17–21�, while others argued that the cu-
mulative distributions of return intervals had systematic de-
viations from scaling and showed multiscaling behaviors
�22–25�.

II. DATA

In this work, we perform return interval analysis of the
energy dissipation rate in three-dimensional fully developed
turbulence based on a high-Reynolds turbulence data set col-
lected at the S1 ONERA wind tunnel by the Grenoble group
from LEGI �26�. The size of the velocity time series �vi : i
=1,2 , . . . ,N� is about 1.73�107. Using Taylor’s frozen flow
hypothesis which replaces a spatial variation of the fluid ve-
locity by a temporal variation measured at a fixed location,
the rate of kinetic energy dissipation at position i is �i
���vi+1−vi� /���2, where ��=0.72 mm is the resolution
�translated in spatial scale� of the measurements. The energy
dissipation rate time series exhibit multifractal nature �27�
and its Hurst index is H=1−� /2=0.81. Contrary to previous
studies on simulated signals and real signals other than tur-*wxzhou@ecust.edu.cn

PHYSICAL REVIEW E 80, 046304 �2009�

1539-3755/2009/80�4�/046304�6� ©2009 The American Physical Society046304-1

http://dx.doi.org/10.1103/PhysRevE.80.046304


bulence signals, we find that the return interval distributions
show two power-law regimes and collapse onto a single
curve for different thresholds Q. The scaling phenomenon is
also observed for conditional interval distributions.

The mean velocity of the flow is approximately �v	
=20 m /s �compressive effects are thus negligible�. The root-
mean-square velocity fluctuations is vrms=1.7 m /s, leading
to a turbulence intensity equal to I=vrms / �v	=0.0826. This is
sufficiently small to use Taylor’s frozen flow hypothesis. The
integral scale is approximately 4 m but is difficult to estimate
precisely as the turbulent flow is neither isotropic nor homo-
geneous at these large scales.

The Kolmogorov microscale 	 is given by �28� 	
= �
2�v	2 /15���v /�t�2	�1/4=0.195 mm, where 
=1.5
�10−5 m2 s−1 is the kinematic viscosity of air. �v /�t is
evaluated by its discrete approximation with a time step in-
crement �t=3.5466�10−5 s corresponding to the spatial res-
olution �� divided by �v	, which is used to transform the data
from time to space applying Taylor’s frozen flow hypothesis.
The Taylor scale is given by �28� �= �v	vrms / ���v /�t�2	1/2

=16.6 mm. The Taylor scale is thus about 85 times the Kol-
mogorov scale. The Taylor-scale Reynolds number is Re�

=�vrms /
=2000. This number is actually not constant along
the whole data set and fluctuates by about 20%.

We have checked that the standard scaling laws previ-
ously reported in the literature are recovered with this time
series. In particular, we have verified the validity of the
power-law scaling E�k��k−� with an exponent � very close
to 5/3 over a range more than two decades, similar to Fig. 5.4
of Ref. �29� provided by Gagne and Marchand on a similar
data set from the same experimental group. The inertial
range can be regarded as the length scales between the Tay-
lor scale � and the integral scale L, which leads to � /��

� /��L /�� or equivalently 23r5000.

III. DISTRIBUTION AND RISK

A. Unconditional PDF

We have calculated the return interval time series ri for
different thresholds Q, which can be mapped nonlinearly to
the mean return intervals RQ. Logarithmic binning is adopted
to construct the distribution density functions PQ�r�. In order
to ensure that the bins cover the whole r axis, we use the
following procedure. First, the interval �1,max�ri�� is parti-
tioned logarithmically into n−1 subintervals whose edges
are x1�x2� ¯ �xn. Then we obtain the sequence yi= �xi�,
where �xi� is a round function of xi. We discard duplicate
integers in the yi sequence and obtain a new sequence wj.
The edge sequence of the bins are determined by �ei�
= �0.5, �wi+0.5��. For each bin �ei ,ei+1�, the empirical density
function can be calculated by

PQ�ri� =
#�ei � r � ei+1�

#�r � 0�
1

ei+1 − ei
, �1�

where ri= �ei+ei+1� /2 and #� � denotes the number of return
intervals that satisfies the condition in the parenthesis.

The empirical distribution of the return intervals is de-
picted in Fig. 1 for RQ=50, 150, and 500. We find that the

three distributions collapse onto a single curve except for r
=1, in remarkable contrast to the simulation results for MRC
and MRW time series. The absence of scaling for r=1 is
probably due to a discreteness effect. Two power-law re-
gimes are observed

RQPQ�r� � 
A1�r/RQ�−�1 if 1 � r � rc

A2�r/RQ�−�2 if r � rc,
� �2�

where A1=0.107, A2=33.4, �1=0.987, and �2=3.88. For the
shuffled data, the RQPQ�r� curves collapse to a single expo-
nential curve.

In order to confirm quantitatively the existence of scaling
behavior, we perform statistical test based on the Cramér–
von Mises criterion. The Cramér–von Mises criterion was
used for judging the goodness-of-fit of the probability distri-
bution compared to a given distribution �30,31�, which is
given by

CM
2 = n�

−�

+�

�F�v� − F��v��2dF�v� , �3�

where F� is the empirical cumulative distribution function,
and F is the corresponding theoretical distribution. This ap-
proach can be easily extended for two-sample cases where
F�v� and F��v� are the empirical cumulative distributions of
the two samples. If the statistic CM

2 is less than the critical
value at a given significance level, we can say that the two
samples are drawn from a same distribution. We perform the
test on each pair of the three samples with RQ
=50,150,500 by excluding r=1. For the RQ=50 and RQ
=150 samples, CM

2 =0.173 and the p value is 0.327. For the
RQ=50 and RQ=500 samples, CM

2 =0.359 and the p value is
0.093. For the RQ=150 and RQ=500 samples, CM

2 =0.106
and the p value is 0.553. It is evident that all the three pairs
of the rescaled distributions are identical at the significance
level of 5% where the critical value is 0.461.

The above test shows that there is a scaling behavior in
Fig. 1 for RQ� �50,500�. When RQ�500, the distribution is
unstable and lack of statistics. When RQ�50, the scaling
behavior disappears. For instance, we find that the return
interval distribution for RQ=10 is very different from those
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FIG. 1. �Color online� Log-log plot of the scaled distribution
RQPQ�r� as a function of r /RQ for three different values of RQ. The
straight lines are the best fits to power laws. The power-law expo-
nents are �1=0.987 and �2=3.88. For the shuffled data, the RQPQ�r�
curves collapse to a same exponential curve, as expected.
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shown in Fig. 1. However, the behavior of return intervals
for small RQ is of less important since we are interested in
large �or extreme� velocity fluctuations. The scaling behavior
for large RQ values has practical applications in risk assess-
ment that we will discuss later in this work.

We have also performed the Cramér–von Mises test to
check if the tails decay in a power law. We find that the
Cramér–von Mises statistic CM

2 =0.710 and the p value is
0.013 for RQ=50, CM

2 =0.571 and p=0.027 for RQ=150, and
CM

2 =0.072 and p=0.738 for RQ=500, respectively. Hence,
we can not reject the hypothesis that the tails follow power-
law distributions at the significance level of 1%. Using the
data with r�rcRQ, the method of Clauset, Shalizi and New-
man gives that the power-law exponent is �2=3.93 for RQ
=50, �2=3.80 for RQ=150, and �2=4.02 for RQ=500 �32�.
These values are consistent with �2=3.88 shown in Fig. 1.

An important question asks whether the observations
�such as the first scaling exponent which is compatible to 1.0
and the crossover of two regimes in the distributions� are
related to the important scales in turbulence. Indeed, large
return intervals correspond to large scales and small return
intervals correspond to the dissipation region. As we have
shown in Sec. II, the inertial range is 23r5000. The
average return intervals RQ� �50,500� show that the cross-
over point is well within the inertial region, which is inde-
pendent of the dissipation region and the integral injection
scale. Indeed, the crossover rcRQ is not a constant but de-
pends on RQ, which is thus impossible to be relevant to any
turbulence scales. However, a physical explanation of this
crossover phenomenon is lack.

B. Risk estimation

In risk estimation, a quantity of great interest is the prob-
ability WQ��t , t� that an extreme event occurs after a short
time �t t from now on, conditioned that the time elapsed t
after the occurrence of the previous extreme event �12�,

WQ��tt� =

�
t

t+�t

PQ�t�dt

�
t

�

PQ�t�dt

. �4�

When t�rc, simple algebraic manipulation leads to

WQ��tt� � ��2 − 1��t/t . �5�

The probability WQ��t  t� is found to be proportional to �t
and inversely proportional to t. An intriguing feature is that
WQ��t  t� is independent of the threshold Q, which is a direct
consequence of the scaling behavior of PQ�r� shown in Fig.
1. When t�rc, we obtain that

WQ��tt� �
��1 − 1�� t

RQ
�−�1 �t

RQ

� t

RQ
�1−�1

+
A2

A1

�1 − 1

�2 − 1
� rc

RQ
�1−�2

− � rc

RQ
�1−�1

�
��1 − 1�� t

RQ
�−�1 �t

RQ

� t

RQ
�1−�1

− 1.0308

. �6�

We find that WQ��t  t� is proportional to �t. However,
WQ��t  t� also depends on RQ. Since WQ��t  t� should be
continuous at t=rc, combining Eqs. �5� and �6�, we have

rc/RQ = �A2/A1�1/��2−�1� = 7.28. �7�

Figure 2 confirms numerically the validity of Eqs. �5� and �6�
by comparing the theoretical curves with the empirical
curves obtained from the definition �4�.

IV. MEMORY EFFECTS

A. Short memory

In order to test the memory effects of the return intervals,
we first investigate the conditional PDF PQ�r r0�, which is
the distribution of return intervals immediately after r0. To
gain better statistics, we study PQ�r r0� for a range of r0
rather than individual r0 values. For each threshold Q or RQ,
the return intervals sequence are sorted in an increasing order
and then divided into eight groups G1 , . . . ,G8 with approxi-
mately equal size. An empirical conditional distribution is
determined for each r0 group. Figure 3 shows PQ�r r0� for
r0�G1 and r0�G8. For each group, the three distributions
collapse onto a single curve, indicating evident scaling be-
havior. The figure shows that the probability of finding small
�large� r in G1 is enhanced �decreased� compared with G8.
This discrepancy in the two groups of distributions unveils
the memory effect that large �small� return intervals tend to
follow large �small� return intervals. This is true since the
distributions associated with different Gi should not exhibit
significant discrepancy if there is no memory in the return
intervals �17�.
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FIG. 2. �Color online� Comparison of WQ��t=5  t� estimated
empirically with that obtained from Eqs. �5� and �6� for different
RQ. The curves for RQ=150 and RQ=50 have been shifted vertically
by factors of 0.5 and 1 for clarity.
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The memory effect in the conditional distribution
PQ�r r0� can also be illustrated by the mean conditional re-
turn interval �r r0	. If there is no memory in the return inter-
vals, �r r0	 does not depend on r0 and is equal to RQ. Figure
4 plots the mean conditional return interval �r r0	 as a func-
tion of r0 for RQ=50, 150, and 500. It is shown that �r r0	 is
a power-law function of r0 when r0 is larger than certain
value and the power-law exponent decreases with RQ, which
is consistent with many simulational and empirical studies.
Also shown in Fig. 4 is the mean conditional return interval
of the shuffled energy dissipation rate, which does not de-
pend on r0.

B. Long-term memory

We now study the long-term correlation in the return in-
tervals using the multifractal detrended fluctuation analysis
�MFDFA� �33�. The MFDFA considers the cumulative time
series Ri=�i=1

m �ri− �r	�, which is partitioned into Ns disjoint
boxes with the same size s. In each box k, the local trend is
removed from the subseries by a polynomial function and the
local rms fluctuation fk�s� is determined. The overall de-
trended fluctuation can be calculated by

Fq�s� = 
 1

Ns
�
k=1

Ns

�fk�s��q�1/q

. �8�

By varying the value of s, one can expect the detrended
fluctuation function Fq�s� scales with the size s,

Fq�s� � sh�q�, �9�

where h�q� is the generalized Hurst index. The return inter-
val series possesses multifractal nature if and only if h�q� is
a nonlinear function of q. When q=2, h�2� is nothing but the
Hurst index H and the MFDFA reduces to the DFA. The
Hurst index H is related to the autocorrelation exponent � by
�=2−2H.

We first investigate the linear long-term correlation prop-
erty of the return intervals using DFA. The dependence of the
fluctuation function F2 is drawn in Fig. 5 against s for RQ
=50, 150, and 500. In all cases, we find nice power-law
relation and the scaling range decreases with the increase of
RQ.

Figure 6 illustrates the dependence of H with respect to
RQ. We find that the relation between H and RQ can be fitted
by an exponential decay,

H = H� + be−RQ/Rc = 0.639 + 0.158e−RQ/69.9, �10�

where Rc=69.9 is the characteristic scale. The inset of Fig. 6
plots H=H� against RQ in log-linear coordinates. The nice
linearity of the data points confirms the validity of Eq. �10�.
For extreme events with very large Q, RQ tends to infinity,
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and the Hurst index can be predicted as H=H�=0.639. This
implies that the return intervals of those extreme events also
exhibit long-term memory.

Previous empirical analysis has unveiled that the long-
term correlation in the return intervals is related to the long-
term correlation in the original data and the return intervals
become uncorrelated if we shuffle the original data �17�. The
turbulent signal investigated in this work has a strong corre-
lation, which might cause the correlation in its return inter-
vals. For extreme events at very large RQ, it is hard to check
if the return intervals are correlated or not due to the lack of
statistics. Our phenomenological finding Eq. �10� provides
an important conjecture that the return intervals are also cor-
related. This provides a potential application in the anticipa-
tion of return intervals between extreme events. We stress
that the determination of H� is completely numerical, and we
do not have a theory to derive the expression �10�. No such a
derivation has been given even for fractional Brownian mo-
tions or multifractal signals.

C. Multifractality

We also apply the MFDFA to investigate the multifractal
nature of the return intervals. Figure 7�a� shows the power-
law dependence of the overall fluctuation Fq�s� on the scale s
for RQ=50. When RQ increases, the Fq�s� function becomes
more noisy, especially for negative q. The slopes of the
straight lines are the linear least-squares estimates of the gen-
eralized Hurst indexes h�q�, which are drawn in Fig. 7�b�.
The mass scaling exponent function ��q�=qh�q�−1 and the
multifractal spectrum f��� calculated according to the Leg-
endre transform of ��q� are illustrated, respectively, in Figs.
7�c� and 7�d�. The sound nonlinearity in h�q� and ��q� is a
hallmark of multifractality in the return intervals, whose sin-
gularity strength increases with RQ.

V. SUMMARY

In summary, we have studied the statistical properties of
return intervals of the energy dissipation rate in three-

dimensional fully developed turbulence. The interval distri-
bution is found to exhibit scaling behavior across different
RQ and two power-law regimes, except for intervals r=1. We
found that the conditional interval distributions also collapse
onto a single curve for same r0, but deviate for different r0,
and the mean conditional interval increases as a power law of
r0, which indicates the presence of short memory in the re-
turn intervals. The long-term memory and the multifractal
nature in the return intervals are confirmed by the DFA and
MFDFA. The Hurst index of the return intervals decays ex-
ponentially against RQ, which allows us to predict the
asymptotic Hurst index of return intervals between rare ex-
treme events as H�=0.639.

The multiplicative random cascade model �10� �and the
same happens for the multifractal random walk model �11��
has been developed in order to mimic the multifractality of a
turbulent signal. These models are very successful in repro-
ducing many “stylized facts” of turbulence. Extensive simu-
lations based on the MRC model and the MRW model un-
veiled that the return intervals have a power-law decay in the
distribution without any evidence of a scaling behavior and
are long-term correlated governed by power laws whose ex-
ponents depend explicitly on the threshold Q �or RQ�
�12–14�. Our results signify discrepancy with the numerical
results using MRC and MRW models, implying that the en-
ergy dissipation process can not be modeled using these
models. In other words, these two models are not able to
capture the behaviors of extreme events.
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